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On some exact solutions of the nonlinear Dirac equation
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Mathematical Institute, Academy of Sciences of Ukrainian SSR, Repin Street 3, Kiev-4,
USSR
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Abstract. Multiparametrical exact solutions of the nonlinear Dirac equation are found
within the framework of the group-theoretical approach. A procedure for generating new
solutions from known ones is presented. The solutions obtained are analytic in the coupling
constant, vanishing at infinity and describe the oscillations with the corresponding solutions
of the equation without self-interaction as amplitude.

1. Introduction

In this paper the multiparametrical exact solutions of nonlinear Dirac equations are
obtained with the help of the group-theoretical approach. The equations have the
form:

[ive 8/6x, —m =A@ ()W (X)) I (x)=0 (1)
[y, 8/9x, =AW () (x) 1 (x) =0 )

where vy, are 4 X4 Dirac matrices (see, for example, Bjorken and Drell 1964) u, v ... =
0,1,2,3, m#0, k, A are arbitrary real constants. We use the summation convention
for repeated indices.

It is worthwhile to distinguish equations (1) with m # 0 from (2) because of their
considerable different symmetry properties.

In order to find the exact solutions, we exploit the fact that equation (1) is invariant
under the Poincaré group P(1, 3), equation (2) is invariant under the Weyl group
W(1,3)={P(1, 3), D} when k #3 and under the conformal group C(1, 3) when k =%
We also show how to draw new families of solutions from known ones.

Fushchich (1981) has obtained multiparametrical exact solutions of many-
dimensional nonlinear scalar sine-Gordon, Liouville, Hamilton-Jacobi, eikonal, Born—
Infeld (Fushchich and Serow 1982), Schrddinger (Fushchich and Moskaliuk 1981)
equations by the method recently proposed (Fushchich 1981). Here we slightly
generalise this method to fit it for the system of partial differential equations.

2. The method

Let Q be an infinitesimal operator of local transformations admitted by equations (1)
or (2). The general form of such an operator is

Q=¢"x)a, +nix) (3)
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where ¢%(x) are scalar functions of x, n(x) denotes the 4 x4 matrix depending on x
and 8, =d/dx,..

The operator Q gives the possibility to find exact solutions of equations (1) or (2)
in such a manner.

For the solutions to be found we adopt the ansarz suggested by Fushchich (1981)

¢x)=A)e(w) 4)
where the nonsingular 4 X 4 matrix A(x) can be defined from the equation

QAx)=(£"(x) 3, +n(x)Ax) =0, (5)
w are invariants of the differential part of the operator Q, i.e. functions satisfying

§"(0w/0x,) =0 (6)

or the equivalent Lagrange—Euler system

dxg dx, dx, dx; Cl=€f dr. (7)

£x) £x) £x) £x)
¢(w) is the new unknown four-component spinor field depending on new variables,
w, the number of which is one less than the number of variables x.

When A(x) and w are known, then the substitution of expression A(x)e¢(w) in
place of ¢(x) in equations (1) and (2) leads to a system of differential equations for
¢ (w) which is often rather easy to solve.

Another procedure for determining the ansatz (4) explicitly is to solve, besides
equation (7), the following system of ordinary differential equations

dy/dr = —n(x(t))y. (8)

If we insert in the general solution of this system, the value 7 defined from (7), and
consider constants of integration as functions of w then we shall obtain the ansatz
(4) possessing the properties (5) and (6). Let us discuss the procedure of generating
new solutions from known ones.

The general form of transformations generated by operator Q (3) is

x>x'=f(x, 8), Yx)>y'(x")=R(x, )¢ (x) ©)

where R(x, §) is a 4 x4 matrix, § is a parameter of transformations. Formula (9)
implies that

Goew(x) =R (x, )¢hoia(x’) (10)

will be a solution of the equation which admits operator Q as well as ¢oq(x) (R "(x, 8)
denotes the inverse matrix).

Remark. Equation (5) is the consequence of the following obvious condition: the
solutions having the form (4) do not produce new solutions by virtue of the procedure
stated above when transformations (9) are generated by the same operator Q (3).
Indeed, we have according to (4) and (10)

R7(x, 6)A(x)e(w) = Alx)p(w). (11)
w' = w because w are invariants of the operator Q:

AN =A(x)+0¢"(x)(0A(x)/dx,)+. .. (12)
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R(x,0)=I—-6n(x)+.... (13)

If we substitute (12) and (13) into (11) and retain terms linear in 6 then we obtain (5).
It is clear now that it is the form of transformations (9) that leads to the ansatz (4).

3. The solutions

First of all we give an example of a conformally invariant solution to the Dirac equation
(2) with Gursey (1956) nonlinearity & =1 which ensures the conformal invariance of
the equation. This solution has the form

_Yx

w0y =L expline (vl =5 cos(hxw) +i 2L sin(res)) x (14)
(x.x") B

(x,x")

where w = Bx/x,x", B" are arbitrary real constants, 8 =(8,8")""?

space—time independent spinor,

>0. x denotes a

Xx = a = constant, x=a"/B"B, Bx=B"x,, etc.

The solution (14) was sought for in the form

¥ 0) = [yx/(x.x*)le () ® =Bx/x.x" (15)
obtained with the help of the conformal transformation operator

Qcont=c“k, =2(cx)x d—x2c 3+ (ycyx +2cx) (16)

Qeontl¥x/(x,x*)*]1=0 [2(cx)xo—x’calw =0 (16)

w=B%/xx" Bc=0

where c* are arbitrary real constants; x>=x,x", x =x,(3/dx,), cx =c"x,. After the
substitution of the expression (15) into equation (2) with k =1it implies that ¢(w)
must satisfy the following system of nonlinear ordinary differential equations

de/dw =i(A/B.8")é¢) *(v8)e
for which it is easy to obtain the general solution

¢ =explidx (yB)wx =[cos(AxBw) +i(yB/B) sin(AxBw)]x
and then (14).

It will be noted that the solution (14) is analytic in the coupling constant A, in
contrast to the solution obtained by Merwe (1981) with the help of the Heisenberg
(1954) ansatz. Besides that

Gy (x)=af(xx")’

i.e. Jy dies off very fast when x,x* - 0. It is also noteworthy that such a solution is
easy to generalise to the case of n spatial variables, the conformally invariant equation
being

[iy 9-=A (@ () (x) " (x) =0

and the solution takes the form

x .
W(x)=WCXP[IM(YB)w]X, v=0,1,...,n
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(here v-matrices have appropriate structure (see e.g. Boerner 1970)). Using straight-
forward calculations one can make sure that the functions (18), stated below, satisfies
equation (1) as well as equation (2) if m=0. This solution has been obtained by virtue
of operator Q, which is a linear combination of the Lorentz rotation generators

QL=06,J0, a=1,2,3
JOa =Xo aa +xa aO“%‘YO‘Ya (17)
Yix)=Ax)e(w)
6 6 &1 61
8" 6 6 s. 6 s_
6. 6 6.1 61
6" 9 9 5. 6 s
S+ 0 — 0
S+
1
0 S_ 0 —
s-

(w12 [Fo cos(a +ag)+iGo sin(a + ayp))
w Y2 [F, cos(a + a;) +iG, sin(a +a1)]
— [Gocosla +ag)+iFq sin(a +agp)]

~ [Gicos(a +ay)+iF; sin(a +a1)] |

¢lw)=

where: 8 = {01, 02, 63}, ao, Ay, Fo, F1, Go, Gl, c= 4(F()G()+F1G1) > are arbitrary real
constants:

w =(Bxo)" — (0 - x)°, s.= (Bxox0 - x)'?
6.=06,£ib,, 6=(62+63+62)""?
(19)

_ Ac* (i-ky/2 _ M .

a—G(k—l)w ex/a), k#1,
Ac m

=—— -—Vao, =1

a Y Inw 2 w k

This solution is also analytic in the coupling constant A and in the mass term, and

- 4(FoGo+F G
G0 (x) =ﬁ=[( eio)% ) ,;)233,2 (20)

i.e. Yy dies off when x,x” > .
The next solution has been obtained by means of the operator
QLp =Q_L+xD, % = constant

21
D=x"93,-1/2k

which is admitted only by equation (2) and not by equation (1). We found an explicit
solution in the case k =1 in such a form.
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Y(x)=Al)e(w)

_Q} A_s __0“' e)«gs @e)\‘s 0 e,\i's \
] 0 6 6
0+ s 63 s 0+ s 63 LS
Ax)= -;—e*- ;e“ —é—e*’ —;e*
et 0 e+’ 0
0 e’ 0 et

(22)
Goa)iB + Fow ~iB
leiﬁ +F10) 8

Y . ~
olw)= w-”z(—g ") (Gow™ —Fow™)
—X

172
+ A .
w—1/2(_6 x) (Gr0™® —Fi0™®)

0 —x J

where: @ ={6,, 8., 83}, x are arbitrary real constants and Fy, F1, Go, G, are complex
ones:

0.=0,+i6,, 6=(02+65+63)"2 w=(6x0—8 *x)(Bxo+8@ »x) 07O
Act (0 +x\? —x £
s =In(6xo+0x)/6 +x, B=2—?(6—_~£> , Ar= x2 ) 6>x
(23)

0+x 1/2 * * * *
C1=4(6 > (F0F0+F1F1_GOGO_GlGl)'

—-X
This solution is also analytic in the coupling constant and
G x)=c1/[(6x0)* = (8 - x)1"? (24)

i.e. g dies off as was previously the case (see (20)).
When &k #1 some particular exact solutions of equation (2) analogous to those
given in (22) are provided by the ansatz (4) with A(x) and ¢ (w) having the form:

s 0 s O3 us O us
6 4 6 6
=] Zer e Leo B
e”* 0 e"+* 0
0 et-* 0 eH~*
(25)
¢olw) \
ew=| , 0
o ¢2(w)
wu+/(x—8)¢3(w)}
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where g, @1, ¢2, ¢3 are defined from the following system of ordinary differential
equations

@82+ @oet +oTei+¢10F = —ic, = constant

d¢0 iA k w tk+11/(x—86)
—_—— - w
do  26°2 ealw)

d(pz_ iA ko [u tk=1)/(x=6)]1-1 M
do  26°% g—x 7o)
(26)

der A 4 ket

dw =26’C2w

p3lw)

des 1A B+x o Lk tee-an-1
_— = Cow * w
do 20 6-x"° eor(w)

we=(—3%x6k)/2k, c, is an arbitrary real constant, and s, w, 6. and 8,8 are defined
in (23).

Below we present the explicit form of transformations admitted by equations (1)

or (2). They can be used to generate new exact solutions of the equations in accordance
with the formula (10).

The conformal transformations

xL=(xu-c“x2)/cr(x) ox)=1-2cx +cx?
¢'(x") = Reontth (x) = o (x)(1 = yeyx i (x) (27)
Rion = 0 2(x)(1 - yxye).
The transformation of dilatation
X =exy, ¢'(x)=Rpy(x)=e " y(x) Rp' =e™". (28)

The transformations of rotations

X6 = Xo, x'=x cosé‘+£—:—85in6+5(;;8)(1—c056);
¢'(x') = Rrot0(x) = (cos 38 + (i/86 T - 8) sin 38)¢s(x) (29)

Rio =cos 38 —(i/8)(Z + 8) sin 18

where 8 = (81, 83, 83), 6§ =(81+83+63)'% S =0uxa, o ={01, 02, o3} are Pauli
matrices, oy is the identity 2 X 2 matrix.
The Lorentz transformations

X6 = xg cosh 8; — x sinh 6,
’
1

xy =x;cosh 8, —xosinh 6,

. o (30)
¢'(x')= Ry, ¢(x)=(cosh 261 + yoy: sinh 20,)¢ (x)

thll = cosh %91 —YoY1 sinh %01

The rest of the Lorentz transformations are analogous to those given above.
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The transformations of displacements
X, =X, +a,, ¢'(x')=¢(x). 31

In formulae (26)-(31) ¢*, a, 8., 84, a,. are arbitrary real constants.

In conclusion we would like to give a simple example of the transformation of the
well known plane-wave solution of the free massless Dirac equation into the new
solution using formulae (10) and (27).

Wowlx) = exp(ikx)x, k*=k,k* =0,
x is a space-time independent spinor, yx = constant:

—yxyc

U= W) = 2 eplik™ [(x, — o)/ (1) ]
ag(x)

kk* =0.

It is easy to verify that it is a solution of the free massless Dirac equation but it is no

longer a plane-wave solution because of the nonlinear character of the conformal
transformations. Moreover,

d(x)(x) = xx/o’(x) =constant/(1 — 2¢cx +¢*x?)?

and dies off very fast when x> =x,x" - o while

‘pr(x )l»//pw(x) = xXx = constant.
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