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On some exact solutions of the nonlinear Dirac equation 
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USSR 
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Abstract. Multiparametrical exact solutions of the nonlinear Dirac equation are found 
within the framework of the group-theoretical approach. A procedure for generating new 
solutions from known ones is presented. The solutions obtained are analytic in the coupling 
constant, vanishing at infinity and describe the oscillations with the corresponding solutions 
of the equation without self-interaction as amplitude. 

1. Introduction 

In this paper the multiparametrical exact solutions of nonlinear Dirac equations are 
obtained with the help of the group-theoretical approach. The equations have the 
form: 

where 7, are 4 x 4 Dirac matrices (see, for example, Bjorken and Drell l964) k,  v . . . = 
0, 1 ,2 ,3 ;  m # 0, k ,  A are arbitrary real constants. We use the summation convention 
for repeated indices. 

It is worthwhile to distinguish equations (1) with m # 0 from (2) because of their 
considerable different symmetry properties. 

In order to find the exact solutions, we exploit the fact that equation (1) is invariant 
under the PoincarC group P(1,3),  equation (2) is invariant under the Weyl group 
W(1,3) = {P(1,3), D} when k # 4 and under the conformal group C(1,3) when k = f. 
We also show how to draw new families of solutions from known ones. 

Fushchich (198 1) has obtained multiparametrical exact solutions of many- 
dimensional nonlinear scalar sine-Gordon, Liouville, Hamilton-Jacobi, eikonal, Born- 
Infeld (Fushchich and Serow 1982), Schrodinger (Fushchich and Moskaliuk 198 1) 
equations by the method recently proposed (Fushchich 1981). Here we slightly 
generalise this method to fit it for the system of partial differential equations. 

2. The method 

Let Q be an infinitesimal operator of local transformations admitted by equations (1) 
or (2). The general form of such an operator is 

Q = E ” ( x ) a , + ~ ( x )  (3) 
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272 W I Fushchich and W A4 Shtelen 

where [ ” ( x )  are scalar functions of x ,  ~ ( x )  denotes the 4 x 4  matrix depending on x 
and a, = alax , .  

The operator Q gives the possibility to find exact solutions of equations (1) or (2) 
in such a manner. 

For the solutions to be found we adopt the ansatz suggested by Fushchich (1981) 

$ ( X I  = A ( x ) c p ( w )  (4) 

Q A ( x ) ” ( 5 ” ( x ) a , + T ( x ) ) A ( x ) = O ,  ( 5 )  

[ + ( a w l a x , ,  = o (6) 

where the nonsingular 4 x 4 matrix A ( x )  can be defined from the equation 

w are invariants of the differential part of the operator Q, i.e. functions satisfying 

or the equivalent Lagrange-Euler system 

cp(w) is the new unknown four-component spinor field depending on new variables, 
U, the number of which is one less than the number of variables x .  

When A ( x )  and w are known, then the substitution of expression A ( x ) c p ( w j  in 
place of $ ( x )  in equations (1) and (2) leads to a system of differential equations for 
cp(w) which is often rather easy to solve. 

Another procedure for determining the ansatz (4) explicitly is to solve, besides 
equation (7) ,  the following system of ordinary differential equations 

(8) 

If we insert in the general solution of this system, the value 7 defined from (7), and 
consider constants of integration as functions of w then we shall obtain the ansatz 
(4) possessing the properties ( 5 )  and (6). Let us discuss the procedure of generating 
new solutions from known ones. 

d$/d7 = --T ( X  (7114. 

The general form of transformations generated by operator Q (3)  is 

x + x ’ = ~ ( x ,  e ) ,  $ ( x )  + VW) = R ( x ,  e w )  (9) 

where R ( x ,  e )  is a 4 x 4  matrix, 8 is a parameter of transformations. Formula (9) 
implies that 

= R - ’ ( x ,  w O l d ( x ’ )  (10) 

will be a solution of the equation which admits operator Q as well as $,,ld(X) ( R - ’ ( x ,  6) 
denotes the inverse matrix). 

Remark. Equation ( 5 )  is the consequence of the following obvious condition: the 
solutions having the form (4) do not produce new solutions by virtue of the procedure 
stated above when transformations (9) are generated by the same operator Q (3).  
Indeed, we have according to (4) and (10) 

R - ’ ( x ,  B ) A ( x ’ ) c p ( w ’ )  = A ( x ) q ( w ) .  (11) 

A ( x  ’) = A ( x  ) + 66” ( x  ) (dA ( x  ) / a x , )  + . , . 
w ’  = w because w are invariants of the operator Q: 

(12) 
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R ( x , e ) = I - e q ( x ) + .  . . .  (13) 

If we substitute (12) and (13)  into (11)  and retain terms linear in 8 then we obtain ( 5 ) .  
It is clear now that it is the form of transformations (9) that leads to the ansatz (4). 

3. The solutions 

First of all we give an example of a conformally invariant solution to the Dirac equation 
(2) with Gursey (1956) nonlinearity k = 5 which ensures the conformal invariance of 
the equation. This solution has the form 

where w = p x / x j  ’, p”  are arbitrary real constants, P = (pvp ” ) ‘ I 2  > 0. x denotes a 
space-time independent spinor, 

Xx = a = constant, 

The solution [ 14) was sought for in the form 

x = a 113/pvpy px = p ”x,, etc. 

$ ( X I  = [ Y x / ( x J ” ) 2 1 d w )  w = px/xyXu (15)  

Q~~~~ = c ” k ,  = ~ ( C X ) X  a - x 2~ a + (YCYX + ~ C X )  (16) 

Q ~ ~ ~ ~ [ Y x / ( x J  ”I2]  e 0 [2(cx)Xa-x2Ca]w = o  (16) 
w = p x / x J ”  pc = o  

obtained with the help of the conformal transformation operator 

where c ”  are arbitrary real constants; x 2 = x j x Y ,  x d=xV(~ /ax , ) ,  cx = c’x,. After the 
substitution of the expression (15) into equation (2) with k = f it implies that q ( w )  
must satisfy the following system of nonlinear ordinary differential equations 

dq/dw = ~ ( ~ / ~ y ~ ” ) ( ~ ~ o ) 1 ’ 3 ~ ~ ~ ) c p  

for which it is easy to obtain the general solution 

9 = exp[iAx(yP)w]x 3 [cos(Axpw) +i(-yP/p) sin(Axpw)]x 

and then (14). 
It will be noted that the solution (14) is analytic in the coupling constant A, in 

contrast to the solution obtained by Merwe (1981) with the help of the Heisenberg 
(1954) ansatz. Besides that 

J(x)$(x)  = a / ( x s ” I 3  

i.e. 64 dies off very fast when X J ”  +CO. It is also noteworthy that such a solution is 
easy to generalise to the case of n spatial variables, the conformally invariant equation 
being 

[iY a - A ( i ( x  14 (x))””l4 (x 1 = 0 

$(x) = Y (“+1)/2 exp[iAx(yP)wlx, 

and the solution takes the form 

v = 0,1 ,  . . . , n YX 

( X J  1 
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A ( x )  = 

(here y-matrices have appropriate structure (see e.g. Boerner 1970)). Using straight- 
forward calculations one can make sure that the functions (18), stated below, satisfies 
equation (1) as well as equation (2) if m =O. This solution has been obtained by virtue 
of operator QL which is a linear combination of the Lorentz rotation generators 

QL = @,Jon a = 1 , 2 , 3  

(17) 1 
Joa = x o  a, + x a  a o - m Y a  

$ ( x )  = A ( x ) c p ( w )  

e- e3 1 e- 1 
e S+ - - \  e S- 

s-  --- 

s- --- --- - 
e e S+ e S- -S+ e 

0 
1 

\ S+ 

- S+ 0 

\ o  S- 0 
\ s- ‘ 

-112 w [Fo cos(a + ( Y O )  + iGo sin(a + a d ]  
w-’”[F1 COS((Y + a l ) + i G l  + ( Y I ) ]  
- [Go COS((Y + ao)  + iFo sin(a f c y 0 ) ]  

- [G1 cos(a +al)+iF1 sin(cY + a 1 ) ]  

CPb) = 

where: 8 = { e l ,  02, e3}, ( Y O ,  cy1, Fo, F1 ,  Go, G1 ,  c = 4(FoG0 + F I G 1 )  > 0 are arbitrary real 
constants: 

hc m 
cy = - - l n w - - J w ,  k = 1. 

28 e 
This solution is also analytic in the coupling constant A and in the mass term, and 

i.e. I,& dies off when XJ” -* CO. 

The next solution has been obtained by means of the operator 

QLD = QL + xD, x = constant 

D = x u  a, - 1/2k 

which is admitted only by equation (2) and not by equation (1). We found an explicit 
solution in the case k = 1 in such a form. 
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- x * e  

2 '  
A*=- e > x  s = ln(8xo + Ox)/@ + X ,  

e + x  l l2  
c1=4 - ( F : F ~ + F T F ~  - G ~ * G ~ -  G T G A  i s  
This solution is also analytic in the coupling constant and 

$(x)+(x) = cl/[(exo)2 - (e e x ) ~ ] ~ / ~  

i.e. $4 dies off as was previously the case (see (20)). 

given in (22) are provided by the ansatz (4) with A(x)  and q ( w )  having the form: 
When k # 1 some particular exact solutions of equation (2) analogous to those 

e- - e@+s 
e 

- - e@+S 

e 
0 

8- e P - s  2 e e @ + s  _-  

e@+s I e e e 
e+ 

e e 
- 63 e @ - s  - e@+S 

0 e @ + s  

0 0 e @ - s  



276 W I Fushchich and W M Shtelen 

where cpo, PI ,  c p 2 ,  cp3 are defined from the following system of ordinary differential 
equations 

* * *  cp 0 cp2 + cpOcp2 + cp 1 cp3 + cp Icp T = - $c2 = constant 

p,  = ( - x  * 8 k ) / 2 k ,  c2 is an arbitrary real constant, and s, w,  8 ,  and 038 are defined 
in (23). 

Below we present the explicit form of transformations admitted by equations (1) 
or (2). They can be used to generate new exact solutions of the equations in accordance 
with the formula (10) .  

The conformal transformations 

The transformation of dilatation 

(28)  R -1 = e m / 2 k  x :  = eax,, 4 ' (x ' )  = R D 4 ( x )  = e - a / 2 k  4 ( x )  D 

The transformations of rotations 

f x x 6  6(x  * 6 )  sin S +- (1-cos6); x ' = x  coss+-  s2 s xo =xo, 

$ ' ( x ' )  = R,,,4(x) = (cos fa + (i/6)(Z - 6 )  sin ~ S ) $ ( X )  

~ ; b ,  = cos 4s - (i/S)(Z 6 )  sin 48 
(29)  

where S=(S1, 8 2 ,  831, S=(S:+S:+S3) 2 1/2 , Z=a(+oxu,  a={al ,  u2, u3} are Pauli 

matrices, uo is the identity 2 x 2 matrix. 
The Lorentz transformations 

xb = xo  cosh -x l  sinh el 
x = x 1  cosh - xo  sinh e l  
4 ' (x ' )  = R L ,  4 ( x )  = (cosh ;el + y o y l  sinh tO1)4(x) 
R;:  = cosh ;el - yoyl sinh $el. 

The rest of the Lorentz transformations are analogous to those given above. 
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The transformations of displacements 

x: =x,+a,, IL‘k’) = +(X I .  (31) 

In formulae (26 ) - (3  1) c ,, a ,  Sa, e,, a, are arbitrary real constants. 
In conclusion we would like to give a simple example of the transformation of the 

well known plane-wave solution of the free massless Dirac equation into the new 
solution using formulae (10) and (27 ) .  

GPw(x) = e x p W  )x, k 2  = k,k” = 0 ,  

x is a space-time independent spinor, f x  = constant: 

k,k” = 0. 

It is easy to verify that it is a solution of the free massless Dirac equation but it is no 
longer a plane-wave solution because of the nonlinear character of the conformal 
transformations. Moreover, 

i ( x ) ~ ( ~ ) = ~ ~ / ~ ~ ( x ) _ = c o n s t a n t / ( ~ - 2 c x  sc 2 x 2 3  ) 

JPw(x )$pw(x) = f x  = constant. 

and dies off very fast when x2  = X J  ” + CC while 
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